Which of the following is/are true?
(1) (1+i)n = 2n2(sinnπ4+icosnπ4)
If (1+i)n = nC0 + nC1i - nC2 - nC3i + nC4...............
(2) nC0 - nC2 + nC4 - nC6................ = 2n2 sinnπ4
(3) nC1 - nC3 + nC5 - nC7....................= 2n2cosnπ4
None of these
(1 + i) = √2 eiπ4
⇒ (1+1)n = (212eiπ4)n = 2n2einπ4
= 2n2(cosnπ4+isinnπ4)
⇒ (1) is wrong
(1+i)n = nC0 + nC1i - nC2 - nC3i + nC4......................
2n2cosnπ4 + i2n2 sin nπ4 = (nC0 - nC2 + nC4...............)
i(nC1 - nC3 + nC5..................)
We can equate the real and imaginary parts separately.
⇒ nC0 - nC2 + nC4 ....................= 2n2cosnπ4
nC1 - nC3 + nC5 .......................=2n2sinnπ4
⇒ (2) and (3) are wrong