The correct option is D x=−1 is point of maxima
f(x)=1−x+x21+x+x2
⇒f′(x)=(1+x+x2)(−1+2x)−(1−x+x2)(1+2x)(1+x+x2)2
⇒f′(x)=2(x+1)(x−1)(1+x+x2)2
f′(x)=0
⇒x=−1,x=1
f′(x) changes from positive to negative at x=−1
⇒x=−1 is point of maxima
f′(x) changes from negative to positive at x=1
⇒x=1 is point of minima
fmax=f(−1)=3
fmin=f(1)=13