The correct option is
A Both I and II are true
1. (cos76)2+(cos16)2−cos76cos16
⇒(cos76+cos16)2−3cos76cos16
Using formula 1 for cosC+cosD, we get
⇒(2cos46cos30)2−3cos76cos16
Putting value of cos30 and solving we get
=3(cos46)2−3cos76cos16
Using formula 2 for 2cosAcosB, we get
=3(cos46)2−3(cos60+cos92)2
Putting value of cos60 and solving, we get
=3(cos46)2−3(cos92)2−34
Using formula for cos2A=2(cosA)2−1, we get
=3(cos46)2−3[2(cos46)2−1]/2−3/4
=3(cos46)2−3(cos46)2+32−34
=34
2. cos6sin24cos72
=cos6.sin24.cos(90−18)
=1/2[2cos6.sin24](sin18)
Using formula 2 for 2cosAsinB, we get
=12[sin(6+24)−sin(6−24)]sin18
=12[sin30.sin18+sin18.sin18]
Using formula 4 for sin18, we get
=12[12×(√5−1)2)+(√5−1)222]
After simplyfing we get,
=18
Hence, the correct answer is option C.