The correct option is C a + b - c
(a+b–c)3–[a3+b3–c3]
=(a+b–c)3+c3−(a3+b3)
=(a+b+c+c)[(a+b+c)2−(a+b−c)c+c2]−(a+b)(a2−ab+b2)
[∴x3+y3=(x+y)(x2−xy+xy2)]
=(a+b)[a2+b2+c2+2ab−2bc−2ca−ca−bc+c2+c2−a2+ab−b2] [∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ca]
=(a+b)[3c2+3ab−3bc−3ca]
=(a+b)[3c2−3ca+3ab−3bc]
=(a+b)[3c(c−a)−3b(c−a)]
=(a+b)(c−a)(3c−3b)
=3(a+b)(c−a)(c−b)=3(a+b)(b−c)(a−c)
Thus, a + b – c is not a factor.
Hence, the correct answer is option (3).