The correct option is C 4
x=a is a zero of the polynomial p(x), if p(a)=0.
Given: p(x)=x3−11x2+36x−36
Taking x=2:
p(2)=(2)3−11×(2)2+36×2−36
= 8 - 44 + 72 - 36
= 0
∴ 2 is a zero of p(x).
Taking x=3:
p(3)=(3)3−11×(3)2+36×3−36
= 27 - 99 + 108 - 36
= 0
∴ 3 is a zero of p(x).
Taking x=4:
p(4)=(4)3−11×(4)2+36×4−36
= 64 - 176 + 108
=−4≠0
∴ 4 is not a zero of p(x).
Taking x=6:
p(6)=(6)3−11×(6)2+36×6−36
= 216 - 396 + 216 - 36
= 0
∴ 6 is a zero of p(x).
Hence, the correct answer is option (c).