The correct option is A 1√6tan−1(√23(3x+2y+4))=x+c
This is reducible to variable separable form.Putting 3x+2y+4=v3+2dydx=dvdxdydx=12(dvdx−3)So,the equation becomes12(dvdx−3)=v2dvdx=2v2+3∫dv2v2+3=∫dx +c ∫dv(√3)2+(√2 v)2=x+c1√31√2tan−1(√2v√3)=x+cSubstituting the value of v1√6tan−1(√23(3x+2y+4))=x+c