The correct option is A y2=12x+cx2
xdydx+y=xy3Dividing by xy31y3dydx+1 xy2=1Take 1y2=uDifferentiating wrt x−2y3dydx=dudx1y3dydx=−du2dx−du2dx+ux=1dudx−2ux=−2Integrating factor= e∫−2xdx =e−2lnx =eln(x−2)=x−2u=x2∫−2x2dx +x2 cu=x22x+cx2u=2x+cx2Substituting u 1y2=2x+cx2y2=12x+cx2