The correct option is C none of these
For the existence of the given, we must have
−1≤x≤1and−1≤3x−1≤1⇒0≤x≤23
Now,
sin−1x=cos−1x+sin−1(3x−1)
⇒sin−1x−cos−1x=sin−1(3x−1)
⇒2sin−1x−π2=sin−1(3x−1)
⇒sin(2sin−1x−π2)x=sin(sin−1(3x−1))
⇒−cos(2sin−1x)=3x−1
⇒−{1−2sin2sin−1x}=3x−1
⇒−(1−2x2)=3x−1
⇒2x2−3x=0⇒x=0,32
⇒x=0[∵0≤x≤2/3]