wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Which of the following is the total general solution of the equation 4cot2x=cot2xtan2x ?

Open in App
Solution

The given equation is 4cot2x=cot2xtan2x
4tan2x=1tan2xtan2x

Using tan2θ=2tanθ1tan2θ

4(1tan2x)2tanx=1tan4xtan2x
2tan2x(1tan2x)=tanx(1tan4x)
Using (a4b4)=(a2b2)(a2+b2)
2tan2x(1tan2x)=tanx(1tan2x)(1+tan2x)
2tan2x(1tan2x)tanx(1tan2x)(1+tan2x)=0
tanx(1tan2x)[2tanx(1+tan2x)]=0
tanx(1tan2x)[(tan2x2tanx+1)]=0
tanx(1tan2x)(tanx1)2=0

tanx=0 or tanx=±1
tanx=tan0 or tanx=±tanπ4
Using
tanθ=tanαθ=nπ+α,nZ

x{nπ,nZ} {nπ±π4,nZ}

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Living vs Nonliving
Watch in App
Join BYJU'S Learning Program
CrossIcon