The given equation is 4cot2x=cot2x−tan2x
⇒4tan2x=1tan2x−tan2x
Using tan2θ=2tanθ1−tan2θ
⇒4(1−tan2x)2tanx=1−tan4xtan2x
⇒2tan2x(1−tan2x)=tanx(1−tan4x)
Using (a4−b4)=(a2−b2)(a2+b2)
⇒2tan2x(1−tan2x)=tanx(1−tan2x)(1+tan2x)
⇒2tan2x(1−tan2x)−tanx(1−tan2x)(1+tan2x)=0
⇒tanx(1−tan2x)[2tanx−(1+tan2x)]=0
⇒tanx(1−tan2x)[(tan2x−2tanx+1)]=0
⇒tanx(1−tan2x)(tanx−1)2=0
⇒tanx=0 or tanx=±1
⇒tanx=tan0 or tanx=±tanπ4
Using
tanθ=tanα⇒θ=nπ+α,n∈Z
⇒x∈{nπ,n∈Z} ∪ {nπ±π4,n∈Z}