The correct option is
C A+O=ALet
A be any
n×n matrix
let A=⎡⎢
⎢
⎢
⎢⎣a11a12−−a1na21a22−−a2n||−−|an1an2−−ann⎤⎥
⎥
⎥
⎥⎦
⟹ AT=⎡⎢
⎢
⎢
⎢⎣a11a21−−an1a12a22−−an2||−−|a1na2n−−ann⎤⎥
⎥
⎥
⎥⎦
A=AT if and only if aij=aji
A=AT if and only if A is symmetric.
A+I=A if and only if aii+1=aii
if and only if 1=0, which is not true.
A+(−A)=I if and only if aii−aii=1
if and only if 0=1, which is not true.
A+O=A+On×n=⎡⎢
⎢
⎢
⎢⎣a11+0a12+0−−a1n+0a21+0a22+0−−a2n+0||−−|an1+0an2+0−−ann+0⎤⎥
⎥
⎥
⎥⎦=⎡⎢
⎢
⎢
⎢⎣a11a12−−a1na21a22−−a2n||−−|an1an2−−ann⎤⎥
⎥
⎥
⎥⎦=A
Hence, A+O=A is true for any matrix.