Which of the following is true about (√3+1)2n, where n is a positive integer
The integer just above it is an even number
The integer above it is divisible by
(√3+1)2 = (4 + 2√3) = 2(2+√3)
⇒ (√3+1)2n = 2n(2+√3)n
Consider (√3−1)
0 < (√3−1) < 1
⇒ 0 < (√3−1)n < 1
Also, (√3−1)2n = (4−2√3)n = 2n(2−√3)n
Let 2n(2+√3)n = I + f, where I is the integral part and f is the fractional part.
Let 2n(2−√3)n = f' , 0 < f' < 1
I + f + f' = (√3+1)2n + (√3−1)2n
= 2n[(2+√3)n+(2−√3)n]
= 2n[2(nC0 2n) + nC22n−2(√3)2 + ............)]
= 2n+1K, where_k_is_a_positive_integer)
0 < f + f' < 2
For I + f + f' to be an integer f + f' should also be an integer. The only integer value it
can take is 1.
I + f + f' is an even integer ⇒ I is an odd integer
The integer just above (√3+1)2n is 2n+1 K
⇒ A & B