Which of the following is true for z=(3+2isinθ)(1−2isinθ),where i=√−1 ?
=3+2isinθ1−2isinθ =(3+2isinθ)(1+2isinθ)(1−2isinθ)(1+2isinθ) =3+8isinθ−4sin2θ1+4sin2θ It will be real only if 8isinθ=0 θ=nπ
[IIT 1976; Pb. CET 2003]
The value of x ∈(−2π,2π) such that sin x+icos x1+i, where i=√−1, is purely imaginary are given by