The correct option is D The sequence is decreasing and convergent.
limitn→∞1(n2+1)1/5
=0.
Hence as the value of n increases, the value of function decreases. Thus it is a decreasing function.
Now applying radio test gives us
limitn→∞|an+1an|
=limitn→∞(|(n)2+1(n+1)2+1|)1/5
=limitn→∞(|n2+1(n+1)2+1|)1/5
Now Denominator is greater than Numerator
=limitn→∞(|n2+1(n+1)2+1|)1/5=0
Hence if r=limitn→∞(|n2+1(n+1)2+1|)1/5 then r<1, Therefore, it is convergent.