wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Which of the following limit is equal to 0?


A

limx0+(xxxxx)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

limx0+x2ln(1x)

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C

limx0+(x)ln(x+1)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

limx0(10x2x5x+1xx+tanx)

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
B

limx0+x2ln(1x)


D

limx0(10x2x5x+1xx+tanx)


y=limx0+xxy=limx0+exlnx=elimx0+xlnx=elimx0+lnx1x=elimx0+1x1x2=elimx0+x=elimx0+0=1

limx0+(xxxxx)=limx0+xxxlimx0+xx=elimx0+xxlnx1=e1=01=1

limx0+x2ln(1x)=(12)limx0+x2ln x.....[0× form]

=(12)limx0+ln x(1x2)....( form)

=(12)limx0+(1x)(2x3)=14limx0+(x2)=0

Let =limx0+(x)ln(x+1)ln=limx0+lnx[ln(x+1)]1

=limx0+(1x)(1ln2(x+1))(1x+1)=limx0+(x+1)ln2(x+1)x

=limx0+(ln(x+1)x)2(x2+x)=(1)2(0+0)=0

Hence, ln =0

=1

limx010x2x5x+1xx+tanx=limx0x(5x1x)(2x1x)(1+tan xx)=(0)(1)(1)2=0


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon