Which of the following limit is equal to 0?
limx→0+x2ln(√1x)
limx→0(10x−2x−5x+1xx+tanx)
y=limx→0+xx⇒y=limx→0+exlnx=elimx→0+xlnx=elimx→0+lnx1x=elimx→0+1x−1x2=elimx→0+−x=elimx→0+0=1
∴limx→0+(xxx−xx)=limx→0+xxx−limx→0+xx=elimx→0+xxlnx−1=e−∞−1=0−1=−1
limx→0+x2ln(√1x)=(−12)limx→0+x2ln x.....[0×∞ form]
=(−12)limx→0+ln x(1x2)....(∞∞ form)
=(−12)limx→0+(1x)(−2x3)=14limx→0+(x2)=0
Let ℓ=limx→0+(x)ln(x+1)⇒lnℓ=limx→0+lnx[ln(x+1)]−1
=limx→0+(1x)(−1ln2(x+1))(1x+1)=limx→0+(x+1)ln2(x+1)−x
=−limx→0+(ln(x+1)x)2(x2+x)=−(1)2(0+0)=0
Hence, ln ℓ=0
⇒ℓ=1
limx→010x−2x−5x+1xx+tanx=limx→0x(5x−1x)(2x−1x)(1+tan xx)=(0)(1)(1)2=0