The correct options are
A 3x−y=0
B x+3y=0
C x+3y+10=0
D 3x−y−10=0
Given circle: S:x2+y2−2x+4y=0
Centre: C=(−g,−f)=(1,−2)
Radius=√g2+f2−c=√5
Length of intercept made by circle
=2√r2−d2
Since r is fixed, it depends on d (distance from centre to the line)
3x−y=0d1=|3(1)+2|√10=5√10x+3y=0d2=|1+3(−2)|√10=5√10x+3y+10=0d3=|1+3(−2)+10|√10=5√103x−y−10=0d4=|3(1)+2−10|√10=5√10
∴d1=d2=d3=d4
All are having equal intercepts.