The correct options are
A Fundamental period of the function f(x)=sin22x+cos42x+2 is π4
B Number of integral values of a for which f(x)=log(log1/3(log7(sinx+a))) is defined for all x∈R is 3
f(x)=sin22x+cos42x+2
=sin22x+(1−sin22x)2+2
=sin22x+(1−sin22x)2+2
=3−sin22x+sin44x
=3−sin22x(1−sin22x)
=3−sin22xcos22x
=3−sin24x4
Period of sin2x is π
∴ Period of f(x) is π4.
f is defined if log1/3(log7(sinx+a))>0
⇒0<log7(sinx+a)<1
⇒1<sinx+a<7
⇒1−sinx<a<7−sinx ∀ x∈R
The inequality is true for all reals.
So, a>maxx ∈ R {1−sinx}=2
and a<minx ∈ R {7−sinx}=6
∴a∈(2,6)