The correct options are
A y=tan(cos−1x);y=√1−x2x
B y=tan(cot−1x);y=1x
C y=sin(tan−1x);y=x√1+x2
D y=cos(tan−1x);y=sin(cot−1x)
y=tan(cos−1x);y=√1−x2x
Domain of the functions
D1=[−1,1]−{0}D2=[−1,1]−{0}
Now, we know that,
y=tan(cos−1x)⇒y=tan(tan−1√1−x2x)⇒y=√1−x2x
Therefore the function indentical, hence they will have same graph.
y=tan(cot−1x);y=1x
D1=R−{0}D2=R−{0}
We know that,
y=tan(cot−1x)⇒y=tan(tan−11x)=1x
Therefore the function indentical, hence they will have same graph.
y=sin(tan−1x);y=x√1+x2
Domain of both the function is R and
y=sin(tan−1x)⇒y=sin(sin−1x√1+x2)⇒y=x√1+x2
Therefore the function indentical, hence they will have same graph.
y=cos(tan−1x);y=sin(cot−1x)
Domain of both the function is R and
y=cos(tan−1x)⇒y=cos(cos−11√1+x2)⇒y=1√1+x2
y=sin(cot−1x)⇒y=sin(1√1+x2)⇒y=1√1+x2
Therefore the function indentical, hence they will have same graph.