The correct option is D a,sinA,R
∵In a △ABC,∠A+∠B+∠C=π
⇒C=π−(A+B)
Using Sine rule we have
asinA=bsinB=csinC=2R
⇒asinA=bsinB=csin[π−(A+B)]=2R
⇒asinA=bsinB=csin(A+B)=2R
Option(a): If we know a,sinA,sinB then we can find b,c,∠A,∠B and ∠C.
Option(b): We can find ∠A,∠B and ∠C using cosine rule.
Option(c):a,sinB,R are given then we can find sinA,b and hence
sinC=sin[π−(A+B)]=sinC
Option(d):a,sinA,R are given then we know only the ratio bsinB or csin(A+B)
We cannot determine the values of b,c,sinB,sinC separately.
∴△ABC cannot be determined in this case.