The correct option is D x2−2x−8=0
We know
−1≤sinx≤1
⇒−3≤3sinx≤3
Range of y=3sinx
y∈[−3,3]
Finding the roots of the quadratic equations,
x2−4=0
⇒x=±2∈[−3,3]
x2+x−2=0⇒(x+2)(x−1)=0
⇒x=1,−2∈[−3,3]
3x2−x=0
⇒x=0,13∈[−3,3]
x2−2x−8=0⇒(x−4)(x+2)=0
⇒x=−2,4
⇒x=4∉[−3,3]
Therefore, the roots of equation x2−2x−8=0 does not lie between [−3,3].