The correct options are
A f(x)=x−[x], where [x] denotes the greatest integer less than or equal to
x D f(x)=exx3sinxOption A: f(x)=x3sinx
f(−x)=(−x)3sin(−x)=−x3(−sinx)=x3sinx=f(x)
As f(−x)=f(x), the function is an even function.
Option B: f(x)=x2cosx
f(−x)=(−x)2cos(−x)=x2cosx=f(x)
As f(−x)=f(x), the function is an even function.
Option C: f(x)=exx3sinx
Now x3sinx is an even function.
Consider, ex.
e−x=1ex
Hence f(−x)=e−xx3sinx. This is not equal to f(x) or −f(x).
Hence f(x) is neither odd nor even.
Option D : f(x)=x−[x]
f(−x)=(−x)−[−x]=−x−(−[x]−1)=−x+[x]+1. This is not equal to f(x) or −f(x). Hence the function is neither odd nor even.