The correct option is C h(x)=cos(cos−1x)
f(x)=(1+ex)2ex
f(−x)=(1+e−x)2e−x
=(1+ex)2e−xe2x
=(1+ex)2ex
=f(x)
Hence f(−x)=f(x). Therefore, f(x) is an even function.
g(x)=sec−1(sec(x))
g(−x)=sec−1(sec(−x))
=sec−1(sec(x))
=g(x)
Hence g(−x)=g(x). Therefore, g(x) is an even function.
h(x)=cos(cos−1(x))
h(−x)=cos(cos−1(−x))
=cos(π−cos−1(x))
=−cos(cos−(x))
=−h(x)
Hence h(−x)=−h(x). Therefore, h(x) is an odd function.
k(x)=cot−1(cot(x))
k(−x)=cot−1(cot(−x))
=cot−1(−cot(x))
=π−cot−1(cot(x))
Hence k(x) is neither odd nor even.