The correct options are
B nπ+π6
C nπ−π6
D 2nπ+π2
22sin2x−3sinx+1+22−2sin2x+3sinx=9
22sin2x−3sinx+1+23−(2sin2x−3sinx+1)=9
Let 22sin2x−3sinx+1=t
∴t+8t=9⇒t2−9t+8=0⇒t=1,8
When t=1
22sin2x−3sinx+1=1
⇒2sin2x−3sinx+1=0⇒(2sinx−1)(sinx−1)=0⇒sinx=12,1
When t=8
22sin2x−3sinx+1=8⇒2sin2x−3sinx+1=3⇒2sin2x−3sinx−2=0⇒(2sinx+1)(sinx−2)=0⇒sinx=−12 (∵sinx∈[−1,1])
From both, we get
sinx=±12,1⇒x=nπ±π6, x=2nπ+π2,n∈Z