Which of the following set values of x satisfies the equation 2(2sin2x−3sinx+1)+2(2−2sin2x+3sinx)=9
We can write the above expression as,
22sin2x−3sinx+1+2322sin2x−3sinx+1=9
Let,
22sin2x−3sinx+1=k
So,
k+8k=9
k=9±72=8or1
⇒22sin2x−3sinx+1=8=23 or 22sin2x−3sinx+1=1=20
2sin2x−3sinx+1=3 or 2sin2x−3sinx+1=0
2sin2x−3sinx−2=0 or (2sinx−1)(sinx−1)=0
sinx=−12or2
or sinx=12Orsinx=1
So,
sinx=−12,12,sinx=1
So, x=nπ or x=nπ±π3