The correct options are
B {nπ+π6, n∈Z}
C {nπ−π6, n∈Z}
D {2nπ, n∈Z}
1+cos3x=2cos2x
⇒1+4cos3x−3cosx=2(2cos2x−1)
4cos3x−4cos2x−3cosx+3=0
Let cosx=t
Then, 4t3−4t2−3t+3=0
⇒4t2(t−1)−3(t−1)=0
⇒(t−1)(4t2−3)=0
⇒t=1 or t2=34
⇒cosx=1 or cos2x=34
⇒cosx=1 or cos2x=cos2π6
⇒x=2nπ or x=nπ±π6