1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard VII
Mathematics
Properties of Multiplication of Integers
Which of the ...
Question
Which of the following shows the distributive property of multiplication over subtraction?
A
x
(
y
−
z
)
=
(
x
×
y
)
−
(
x
×
z
)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x
(
y
−
z
)
=
(
x
×
y
)
−
z
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x
×
(
−
y
)
=
(
−
x
)
×
y
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x
×
(
−
1
y
)
=
(
−
x
)
×
(
1
y
)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
x
(
y
−
z
)
=
(
x
×
y
)
−
(
x
×
z
)
x
(
y
−
z
)
=
(
x
×
y
)
−
(
x
×
z
)
shows the distributive property of multiplication over subtraction.
Suggest Corrections
0
Similar questions
Q.
Using the properties of determinants, show that:
∣
∣ ∣ ∣
∣
x
x
2
y
z
y
y
2
z
x
z
z
2
x
y
∣
∣ ∣ ∣
∣
=
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
(
x
y
+
y
z
+
z
x
)
Q.
Using properties of determinants prove the following :
∣
∣ ∣
∣
3
x
−
x
+
y
−
x
+
z
x
−
y
3
y
z
−
y
x
−
z
y
−
z
3
z
∣
∣ ∣
∣
=
3
(
x
+
y
+
z
)
(
x
y
+
y
z
+
x
z
)
.
Q.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
=
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
t
a
n
−
1
⎷
{
x
(
x
+
y
+
z
)
y
z
}
+
t
a
n
−
1
⎷
{
y
(
x
+
y
+
z
)
z
x
}
+
t
a
n
−
1
⎷
{
z
(
x
+
y
+
z
)
x
y
}
=
Q.
Show that
∣
∣ ∣ ∣
∣
x
x
2
y
z
y
y
2
z
x
z
z
2
x
y
∣
∣ ∣ ∣
∣
=
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
(
x
y
+
y
z
+
z
x
)
Q.
If
x
+
y
+
z
=
x
y
z
, prove that
x
+
y
1
−
x
y
+
y
+
z
1
−
y
z
+
z
+
x
1
−
z
x
=
x
+
y
1
−
x
y
⋅
y
+
z
1
−
y
z
⋅
z
+
x
1
−
z
x
.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Properties of Multiplication of Integers
MATHEMATICS
Watch in App
Explore more
Properties of Multiplication of Integers
Standard VII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app