Which of the following statements are correct?
1 . if sin θ = sin α ⇒ θ = nπ + (−1)nα where α ∈ [ - π2 , π2] n ∈ I
2 . if cos θ = cos α ⇒ 2nπ±α where α ∈ [0,π] n ∈ I
3 . if tan θ = tan α ⇒ θ = nπ + α where α ∈ (- π2 , π2 ) n ∈ I
All 1, 2 & 3
1.) sinθ = sin α
sinθ = sin α = 0
2. cos (θ+α2) .sin (θ−α2) = 0
cos (θ+α2) or sin (θ−α2) = 0
(θ+α2) = (2n+1)π2 or (θ−α2) = nπ where n ∈ Z
θ = (2n+1) π - α or θ = 2nπ - α where n ∈ Z
Hence
θ = (2n+1) π + (−1)2n+1 × α or θ = 2nπ + (−1)2nα ,where n ∈ Z
Combining these two results we get,
x = nπ + (−1)nα, where n ∈ Z
2.) cos θ = cos α
cos θ - cos α = 0
2 sinθ+α2.sinθ−α2 = 0
-2 sinθ+α2.sinθ−α2 = 0
sinθ+α2 = 0 or .sinθ−α2 = 0
θ+α2 = nπ or θ−α2 = nπ
θ = 2nπ - α or θ = 2nπ + α
Hence θ = 2nπ ± α, where n ∈ Z
3 )tanθ = tan α
sinθcosθ - sinαcosα = 0
sinθ.cosα−cosθ.sinαcosθ.cosα = 0
sin(θ−α)cosθ.cosα = 0
sin(θ-α) = 0 and θ & α should NOT be odd multiples if π/2
θ-α = nπ
θ = nπ + α where n ∈ Z
θ & α ≠ (2n+1) π/2