The correct options are
B sin(A+B4)=cos(C+D4)
C tan(A+C4)=cot(B+D4)
In a quadrilateral, sum of all the interior angles is 360∘.
A+B+C+D=360∘
⟹A+B+C+D4=90∘
⟹A+B4=90∘−C+D4
⟹sin(A+B4)=sin(90∘−C+D4)
Since, cosθ=sin(90∘−θ)
⟹sin(A+B4)=cos(C+D4)
Now, let's simplify this in a different way.
A+B+C+D4=90∘
⟹A+C4=90∘−B+D4
⟹tan(A+C4)=tan(90∘−B+D4)
Since, cotθ=tan(90∘−θ)
⟹tan(A+C4)=cot(B+D4)