The correct options are
A Rolle's theorem is applicable to the function F(x)=1−5√x6 on the interval [−1,1].
D The value of 2010∑k=1{x+k}2010, where {x} denotes the fractional part of x, is {x}.
F(x)=1−x6/5
F(x) is continuous for all x∈[−1,1]
F′(x)=−65x1/5 exists ∀ x∈(−1,1)
Also, F(−1)=F(1)=0
Hence, Rolle's theorem is applicable to the function F(x).
F(x)=log4(5−[x−1]−[x]2)x2+x−2
For domain of F(x),
5−[x]+1−[x]2>0
and x2+x−2≠0
⇒(x+2)(x−1)≠0⇒x≠−2,1
Now, [x]2+[x]−6<0
⇒([x]+3)([x]−2)<0⇒−3<[x]<2⇒−2≤x<2
∴ Domain =(−2,1)∪(1,2)
F(θ)=asinθ+13sin3θ
F′(θ)=acosθ+cos3θ
As F(θ) has an extremum at θ=π3, so
acosθ+cos3θ=0 at θ=π3.
⇒a2−1=0
⇒a=2
2010∑k=1{x+k}2010=2010∑k=1{x}2010 (∵{x+r}={x} ∀ r∈Z)={x}