The correct option is D The function f(x)=x5+10x3+20x−18 is strictly increasing ∀ x∈R
f(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩−2x,if x≥12−4,if −12<x<12,x≠02x,if x≤−12
Clearly, limx→0f(x) exists and equals −4
f(x)={2−x,if x≤1x2−3x+2,if x>1
Checking continuity at x=1
f(1−)=1
f(1+)=0
f(1−)≠f(1+)
So, f is discontinuous at x=1
⇒f is non-differentiable at x=1
f(x)=3sin4x−cos6x
f′(x)=12sin3x⋅cosx+6cos5x⋅sinx
=6sinxcosx(2sin2x+cos4x)
(Note: As f(x) is periodic with fundamental period π, so it is sufficient to study range of f(x) on the interval [0,π].)
f′(x)=0⇒sin2x=0
⇒x=0,π2,π,…
f(0)=−1, f(π2)=3, f(π)=−1
∴ Absolute difference between the maximum value and the minimum value =4
f(x)=x5+10x3+20x−18
f′(x)=5x4+30x2+20
f′(x)>0 ∀ x∈R
∴f(x) is strictly increasing ∀ x∈R