The correct option is D −9
∣∣
∣
∣∣(1+α)2(1+2α)2(1+3α)2(2+α)2(2+2α)2(2+3α)2(3+α)2(3+2α)2(3+3α)2∣∣
∣
∣∣R2→R2−R1R3→R3−R1
(Take common)
2∣∣
∣
∣∣(1+α)2(1+2α)2(1+3α)23+2α(3+4α)(3+6α)(4+2α)(4+4α)(4+6α)∣∣
∣
∣∣
R3→R3–R2
2∣∣
∣
∣∣(1+α)2(1+2α)2(1+3α)23+2α3+4α3+6α111∣∣
∣
∣∣C2→C2−C1C3→C3−C1
(Take common)
∴2α.2.α∣∣
∣
∣∣(1+α)2(2+3α)(2+4α)3+2α22100∣∣
∣
∣∣
4α2|−2α|=−8α3=−648α
α=0,α2=81,α=±9