Which of the following values of p satisfy the equation?
(p2+p)(p2+pā3)=28
A
p=1±√292
No worries! Weāve got your back. Try BYJUāS free classes today!
B
p=−1±√152
No worries! Weāve got your back. Try BYJUāS free classes today!
C
p=−1±√292
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
p=1±√152
No worries! Weāve got your back. Try BYJUāS free classes today!
Open in App
Solution
The correct option is Dp=−1±√292 (p2+p)(p2+p−3)=28 Let p2+p=x Hence, x(x−3)=28 x2−3x−28=0 x2−7x+4x−28=0 (x−7)(x+4)=0 x=7,−4 Now, when x=7, p2+p=7 p2+p−7=0 p=−1±√292 when x=−4, p2+p=−4 p2+p+4=0
p=−1±√1−162 so not possible to find real roots when p=−4. Thus, p=−1±√292