Which one is/are numerically greatest term in the expansion of (3−5x)15;x=15 ?
(3−5x)15=315[1+(−5x3)]15
To find numerically greatest term, Tr+1Tr≥1
⇒Tr+1= 15Cr(−5x3)r
and, Tr= 15Cr−1(−5x3)r−1
Tr+1Tr= 15Cr(−5x3)r 15Cr−1(−5x3)r−1
=15!r!(15−r)!15!(r−1)!(16−r)!×(−5x3)
=16−rr×(−5x3)
[To find the numerically greatest term, we will ignore the negative sign in (−5x3)]
Putting x=15, we get
=16−rr×(13)
Now, Tr+1Tr≥1
⇒16−rr×(13)≥1
⇒16−r3r≥1
⇒r≤4
So, numerically greatest terms are T4 and T5.