The correct options are
A b2c2+c2a2+a2b2≥abc(a+b+c)
B bca+cab+abc≥a+b+c
C bca3+cab3+abc3≥1a+1b+1c
D 1a+1b+1c≥1√(bc)+1√(ca)+1√(ab)
(a), (b), (c), (d)
(a) b2c2+c2a2>2(a2b2c4)12or>2abc2
Similarly c2a2+a2b2>2bca2
a2b2+b2c2>2cab2
Add all three inequalities
(b) bca+cab≥2(bca.cab)12or≥2c etc.
(c) bca3+cab3>2(bac2a3b3)12or>2cab
Similarly writing other inequalities and adding, we get
bca3+cab3+abc3>cab+bca+abc……(A)
Again cab+bca>2[bcbc.a2]12=2.1a
Similarly writing other inequalities and adding, we get
cab+bca+abc>1a+1b+1c……(B)
∴bca3+cab3+abc3>1a+1b+1c from (A) and (B)
(d) 1b+1c>2[1b.1c]12or>21√(bc)
and so on