The correct option is A ∀x(∃z(¬β)→∀y(α))
Let,∀y(α)=P,∀z(β)=Q
Then, ∃y(¬α)=¬P and ∃z(¬β)=¬Q
Given, ¬∃(∀y(α)∧∀z(β))
=¬∃x(p∧Q)=¬∀x(¬p∨¬Q)
=∀x(p→¬Q)
(a) ∀x(∃z(¬β)→∀y(α)=∀x(¬Q→P))
(b) ∀x(∀z(β)→∃y(¬α))=∀x(Q→¬P)=∀x(p→¬Q)
(c) ∀x(∀y(α)→∃z(¬β))=∀x(P→¬Q)
(d) ∀x(∃y(¬α)∨∃z(¬β))=∀x(¬P∨¬Q)
=∀x(¬P∨¬Q)
∴ Only (a) is not logically equivalent to ∀x(¬P→¬Q)