The correct option is B ∀x(p(x)→W)≡∀x p(x)→W
∀x(p(x))→W)⇒(∀x(p(x))→ W is true.
But ∀x(p(x))→W⇒∀x(p(x)→W) is false.
Since if LHS is true then (P1∧P2∧P3...∧ Pn)→ W will be true and RHS will be false since P1→ W, itself will be false, since only P1 true cannot make W true (we need all the P1,P2...,Pn to be true to make W true )
So LHS ⇒ RHS true and RHS ⇒ LHS is false so LHS ≠ RHS .
So option (b) is invalid.
Note that option (c) is true bacause by Boolean algebra,
LHS=∃x(p(x)→W)≡∃x(∼p(x)∨W)
≡∃x(∼p(x))∨W
RHS = ∀xp(x)→W≡∼(∀xp(x))∨W
≡∃x∼p(x))∨W
So LHS = RHS.