The correct option is D cot(sin−1(sin4))
We will solve this by options
Option A, cos(tan−1(tan4))
cos(tan−1(tan4))=cos(tan−1(tan(π+(4−π)))=cos(tan−1(tan(4−π)))=cos(4−π) (which is positive)
Option B,sin(cot−1(cot4))
cos(tan−1(tan4))=sin(cot−1(cot(π+(4−π)))=sin(cot−1(cot(4−π)))=sin(4−π) (which is positive)
tan(cos−1(cos5))=tan(cos−1(cos(2π−(2π−5))))=tan(cos−1(cos(2π−5)))=tan(2π−5) (which is positive)
cot(sin−1(sin4))=cot(sin−1(sin(π+(4−π)))=cot(sin−1(−sin(4−π)))=cot(π−4) (which is negative)