The correct option is
B log1/213Let
x=log1/312Changing base of log to 3, we get
x=log312log313
⇒x=−1−1log32
⇒x=log32
Since, 2<3
log32<log33=1
∴x<1
y=log1/213
Changing base of log to 2, we get
y=log213log312
y=−1−1log23>log22=1
∴y>1
Hence y>x
⇒log1/213>log1/312.