P(x)=x4−3x+1x+3
Let Q(x) be added to P(x) to get x2+1x+2
P(x)+Q(x)=x2+1x+2
x4−3x+1x+3+Q(x)=x2+1x+2
Q(x)=x2+1x+2−x4−3x+1x+3
Q(x)=(x2+1)(x+3)−(x+2)(x4−3x+1)(x+3)(x+3)$
Q(x)=x3+3x2+x+3−(x5−3x2+x+2x4−6x+2)(x+2)(x+3)
Q(x)=x3+3x2+x+3−x5−2x4+3x2+5x−2(x+2)(x+3)
Q(x)=−x5−2x4+x3+6x2+6x+1(x+2)(x+3)
Q(x)=−x5−2x4+x3+6x2+6x+1(x+2)(x+3)