(i) Given : 2,2√2,4,...
Here, first term a=2
common ration r=2√22=√2
and nth term =128
We know, the nth term of G.P.is
an=arn−1
⇒128=2×(√2)n−1
⇒64=((√2)n−1
⇒(√2)12=(√2)n−1
⇒12=n−1
∴n=13
(ii) Given: √3,3,3√3,...
Here, first term a=√3,
common ratio r=3√3=√3
and nth term =729
We know, the nth term of G.P. is
an=arn−1
⇒729=√3×(√3)n−1
⇒729=(√3)n
⇒(√3)12=(√3)n
By comparing powers, we get
n=12
(iii) Given: 13,19,127...
Here, first term a=13,
common ratio r=1913=19×31=13
and nth term =119683
We know, the nth term of G.P. is
an=arn−1
⇒119683=13×(13)n−1
⇒119683=13n
⇒(13)9=(13)n
By comparing powers, we get
∴n=9