wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

While finding the roots of the quadratic equation 3x2- 26 x + 2 = 0 using factorization method, the given equation is reduced to the form (ax+b)(cx+d). The values of a and d are


A

√3, √6

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

√3, -√2

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C

-√3, √6

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

-√7, √6

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B

√3, -√2


If ax2+bx+c=0,

Find two numbers p,q such that p+q = b and pq = (a × c)

3x2- 26x +2 = 0

We need to split the middle term,

We can write as 3x2- 6x- 6x + 2=0

Take the common terms out

3x( 3x- 2)- 2(3x- 2 )=0

⇒( 3x- 2) ( 3x- 2 )=0

So the roots can be found out by equating the factors to zero.

Therefore the roots will be x=(23) , (23)

Comparing the co-effecients of x with (ax+b)(cx+d), we get a=3 , d=-2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving QE by Factorisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon