CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
145
You visited us 145 times! Enjoying our articles? Unlock Full Access!
Question

White coherent light (400 nm-700 nm) is sent through the slits of a Young's double slit experiment (figure 17-E3). The separation between the slits is 0⋅5 mm and the screen is 50 cm away from the slits. There is a hole in the screen at a point 1⋅0 mm away (along the width of the fringes) from the central line. (a) Which wavelength(s) will be absent in the light coming from the hole? (b) Which wavelength(s) will have a strong intensity?

Figure

Open in App
Solution

Given: Separation between two slits,
d=0.5 mm=0.5×10-3 m
Wavelength of the light, λ=400 nm to 700 nm
Distance of the screen from the slit, D=50 cm=0.5 m,
Position of hole on the screen, yn=1 mm=1×10-3 m

(a) The wavelength(s) will be absent in the light coming from the hole, which will form a dark fringe at the position of hole.
yn=2n+1λn2Dd , where n = 0, 1, 2, ...

λn=22n+1 yndD =22n+1×10-3×0.05×10-30.5 =22n+1×10-6 m =22n+1×103 nm

For n=1,λ1=23×1000 =667 nmFor n=2,λ2=25×1000=400 nm
Thus, the light waves of wavelength 400 nm and 667 nm will be absent from the light coming from the hole.

(b) The wavelength(s) will have a strong intensity, which will form a bright fringe at the position of the hole.
So, yn=nλnDdλn=yndnDFor n=1, λ1=yndD =10-3×0.5×10-30.5 =10-6 m=1000 nm.

But 1000 nm does not fall in the range 400 nm − 700 nm.

Again, for n=2,λ2=ynd2D=500 nm
So, the light of wavelength 500 nm will have strong intensity.


flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
YDSE Problems
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon