CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
387
You visited us 387 times! Enjoying our articles? Unlock Full Access!
Question

Why is nuclear fission highly exothermic(energy)?

Open in App
Solution

Typical fission events release about two hundred million eV (200 MeV) of energy, the equivalent of roughly >2 quadrillion Kelvin, for each fission event. The exact isotope which is fissioned, and whether or not it is fissionable or fissile, has only a small impact on the amount of energy released. This can be easily seen by examining the curve of binding energy (image below), and noting that the average binding energy of the actinide nuclides beginning with uranium is around 7.6 MeV per nucleon. Looking further left on the curve of binding energy, where the fission products cluster, it is easily observed that the binding energy of the fission products tends to center around 8.5 MeV per nucleon. Thus, in any fission event of an isotope in the actinide's range of mass, roughly 0.9 MeV is released per nucleon of the starting element. The fission of U235 by a slow neutron yields nearly identical energy to the fission of U238 by a fast neutron. This energy release profile holds true for thorium and the various minor actinides as well.[6]

By contrast, most chemical oxidationreactions (such as burning coal or TNT) release at most a few eV per event. So, nuclear fuel contains at least ten million times more usable energy per unit mass than does chemical fuel. The energy of nuclear fission is released as kinetic energy of the fission products and fragments, and as electromagnetic radiation in the form of gamma rays; in a nuclear reactor, the energy is converted to heat as the particles and gamma rays collide with the atoms that make up the reactor and its working fluid, usually water or occasionally heavy water or molten salts.

When a uranium nucleus fissions into two daughter nuclei fragments, about 0.1 percent of the mass of the uranium nucleus[7] appears as the fission energy of ~200 MeV. For uranium-235 (total mean fission energy 202.79 MeV[8]), typically ~169 MeV appears as the kinetic energy of the daughter nuclei, which fly apart at about 3% of the speed of light, due to Coulomb repulsion. Also, an average of 2.5 neutrons are emitted, with a mean kinetic energy per neutron of ~2 MeV (total of 4.8 MeV).[9] The fission reaction also releases ~7 MeV in prompt gamma rayphotons. The latter figure means that a nuclear fission explosion or criticality accident emits about 3.5% of its energy as gamma rays, less than 2.5% of its energy as fast neutrons (total of both types of radiation ~ 6%), and the rest as kinetic energy of fission fragments (this appears almost immediately when the fragments impact surrounding matter, as simple heat). In an atomic bomb, this heat may serve to raise the temperature of the bomb core to 100 million kelvin and cause secondary emission of soft X-rays, which convert some of this energy to ionizing radiation. However, in nuclear reactors, the fission fragment kinetic energy remains as low-temperature heat, which itself causes little or no ionization.

So-called neutron bombs (enhanced radiation weapons) have been constructed which release a larger fraction of their energy as ionizing radiation (specifically, neutrons), but these are all thermonuclear devices which rely on the nuclear fusion stage to produce the extra radiation. The energy dynamics of pure fission bombs always remain at about 6% yield of the total in radiation, as a prompt result of fission.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon