wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

With usual notation, if in a triangle ABC, cosAcosB+sinAsinBsinC=1, then a:b:c=x:x:y. The value of 22y is

Open in App
Solution

cosAcosB+sinAsinBsinC=1
sinC=1cosAcosBsinAsinB
1cosAcosBsinAsinB1
1cosAcosBsinAsinB
1cos(AB)
cosθ cannot be greater than 1
So, cos(AB)=1
A=B

So, sinC=1cos2Asin2A
sinC=1C=π/2

Now, A+B+C=π
A=B=π4
sinA:sinB:sinC=12:12:1
a:b:c=1:1:2

Hence, the value of 22y=22×2=4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sine Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon