cosAcosB+sinAsinBsinC=1
⇒sinC=1−cosAcosBsinAsinB
⇒1−cosAcosBsinAsinB≤1
⇒1−cosAcosB≤sinAsinB
⇒1≤cos(A−B)
cosθ cannot be greater than 1
So, cos(A−B)=1
⇒A=B
So, sinC=1−cos2Asin2A
⇒sinC=1⇒C=π/2
Now, A+B+C=π
⇒A=B=π4
sinA:sinB:sinC=1√2:1√2:1
⇒a:b:c=1:1:√2
Hence, the value of 2√2y=2√2×√2=4