With usual notations, C1+22C2+32C3+.......=
n(n+1)2n-2
C0+C1x+C0x2+....+Cnxn=(1+x)n ....(1)
Diff. w.r.t. x,
C1+2C2x+3C3x2+⋯+nCnxn−1=n(1+x)n−1 .
Multiplying by x,
C1x+2C2x2+3C3x3+⋯+nCnxn=nx(1+x)n−1
Diff. w.r.t. x, we get
C1+22C2x+32C3x2+⋯
=n(1+x)n−1+n(n−1)x(1+x)n−2
Putting x=1,
C1+22C2+32C3+⋯=n.2n−1+n(n−1)2n−2
=n(n+1).2n−2.