With usual notations, if in a triangle ABC,b+c11=c+a12=a+b13, then cosA:cosB:cosC is equal to
A
7:19:25
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
19:7:25
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12:14:20
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
19:25:20
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B7:19:25 b+c11=c+a12=a+b13=2(a+b+c)36 or b+c11=c+a12=a+b13=a+b+c18=k ∴b+c=11k,c+a=12k,a+b=13k,a+b+c=18k Substituting b+c=11k in a+b+c=18k we get a+11k=18k or a=7k Substituting a=7k in c+a=12k we get c+7k=12k or c=5k Substituting c=5k in b+c=11k we get b+5k=11k or b=6k ∴a=7k,b=6k and c=5k Using cosine rule, we get cosA=b2+c2−a22bc=(6k)2+(5k)2−(7k)22×6k×5k=36k2+25k2−49k260k2=15(On simplification) cosB=c2+a2−b22ca=(5k)2+(7k)2−(6k)22×5k×7k=25k2+49k2−36k270k2=1935(On simplification) cosC=a2+b2−c22ab=(7k)2+(6k)2−(5k)22×7k×6k=49k2+36k2−25k284k2=57(On simplification) cosA:cosB:cosC=15:1935:57 On simplification, we get cosA:cosB:cosC=735:1935:2535=7:19:25