With usual notations in a triangle ABC, if r1=2r2=2r3 then -
r1=2r2=2r3Δs−a=2Δs−b=2Δs−cΔs−a=2Δs−bs−b=2s−2a⇒3a−3b=c......(i)2Δs−b=2Δs−c⇒b=c
Substituting in (i)
3a−3b=b3a=4b
In acute angled triangle ABC,r+r1=r2+r3 and ∠B>π3 then
3a−[4a−¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯3a−5b−3{2a−(3a−¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯2a−3b)}] equals
Subtract: (3a - 4b + 5c) from (4a - b + 6c).