With usual notations, prove that in a triangle ABC,
b−cr1+c−ar2+a−br3=0
Open in App
Solution
Formulae related to radii of Ex-circles:
r1=△s−a,r2=△s−b,r3=△s−c
r1=stanA2,r2=stanB2,r3=stanC2
We know that r1=areas−a Similarly r2=areas−b and r3=areas−c So b−cr1+c−ar2+a−br3=1area[(s−a)(b−c)+(s−b)(c−a)+(s−c)(a−b)] On solving, right hand side =1area[s(b−c)−a(b−c)+s(c−a)−b(c−a)+s(a−b)−c(a−b)] =1area[s(b−c+c−a+a−b)−ab+ac−bc+ab−ac+bc]=1area[0−0]=0