wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Without actual calculating, find:
(x2y)3+(2y32)3+(32x)33((x2y)(2y32)(32x)).

Open in App
Solution

We know the identity of trinomial: a3+b3+c33abc=(a+b+c)(a2+b2+c2abbcca).

So, comparing the given equation (x2y)3+(2y32)3+(32x)33((x2y)(2y32)(32x)) with the identity a3+b3+c33abc, we have,

a=x2y,b=2y32,c=32x.

So, substitute the values of a,b and c in a3+b3+c33abc=(a+b+c)(a2+b2+c2abbcca) as follows:

(x2y)3+(2y32)3+(32x)33((x2y)(2y32)(32x))
=(x2y+2y32+32x)((x2y)2+(2y32)2+(32x)2(x2y)(2y32)
(2y32)(32x)(32x)(x2y))=0×((x2y)2+(2y32)2+(32x)2(x2y)(2y32)(2y32)(32x)(32x)(x2y))=0.

Hence, (x2y)3+(2y32)3+(32x)33((x2y)(2y32)(32x))=0.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
(a ± b ± c)²
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon