Without actually calculating the cubes, find the value of :
The correct option is B −536
We know that,
a3+b3+c3=(a+b+c)(a2+b2+c2−ab−bc−ca)+3abc
If a+b+c=0, then a3+b3+c3=3abc
Now 12 + 13 - 56
LCM of 2, 3, 6 is 6
Then 12 + 13 - 56 = 3+2−56
12 + 13 - 56 = 0
(12)3 + (13)3 - (13)3 = (12) (13)(−56) = −536